Histological and Confocal Changes in Rabbit Cornea Produced by an Intrastromal Inlay Made of Hexafocon A

Ahmad Salamatrad, MD, Mahmoud Jabbarvand, MD, Hesam Hashemian, MD, Mehdi Khodaparast, MD, and Farshad Askarizadeh, MS

Purpose: The aim of this study was to evaluate biocompatibility of a newly proposed intrastromal inlay in rabbit corneas.

Methods: Eighteen eyes of 9 New Zealand rabbits were included in this prospective study. An intrastromal pocket was created in both eyes using Melles instruments. Annular intracorneal inlays made of hexafocon A were implanted randomly into the stromal pocket of one eye of each rabbit. Confocal microscopy was performed at each visit during 6-month follow-up. After 6 months, the rabbits were killed and corneal tissues of both eyes were sent for light microscopic studies.

Results: Mild stromal edema was present during the first few days and disappeared afterward with mild haze around the tunnel site in all cases. Deposits around the lamellar channel developed in 3 implanted eyes and in none of the pocket-only eyes. No neovascularization or epithelial downgrowth was present at the incision site in any case. All inlays remained centered and optically clear. In confocal imaging, we observed no significant difference in keratocyte cell density and inflammatory cells between the control pocket-only group and inlay group. In pathological evaluation, there was no difference in the average epithelial thickness between both groups. Descemet membrane and endothelium appeared normal in both groups.

Conclusions: This study revealed safety and biocompatibility of hexafocon A as an intracorneal inlay in rabbits.

Key Words: intrastromal inlay, hexafocon A, rabbit model

Cornea 2015;34:78–81

Corneal inlays, first proposed by Barraquer, are reversible intrastromal implants that do not require stromal tissue removal. Instead, synthetic material is added to the stroma to reshape the corneal surface and to correct refractive errors in some cases. Primarily, poor results of implantation were due to low permeability of inlay materials. Over the past decade, more water-, oxygen-, and nutrient-permeable materials such as KAMRA inlays (AcuFocus, Inc, Irvine, CA) and Perma-Vision lenses (Anamed Inc, Lake Forest, CA) were developed, which are commercially available for correction of presbyopia and hyperopia, respectively. Several human and animal studies have proved the safety and efficacy of these inlays. McCarey et al reported favorable results of hydrogel intracorneal inlay implantation into the eyes of rhesus monkey after 2 years of follow-up. Ismail, Sweeney et al, and Xie et al reported on the safety, efficacy, and excellent biocompatibility of intrastromal lens implantation in rabbit eyes. Sweeney et al reported a similar experience with human eyes. Other human studies have reported acceptable visual outcome after corneal inlay implantation for hyperopia correction.

Newly proposed techniques for management of keratoconus are increasing, which are stimulated by the demand to avoid keratoplasty. Intracorneal segments and MyoRings (Dioptrx GmbH, Linz, Austria) have been helpful in attaining this goal. However, each of these new techniques has been associated with some complications, including epithelial abnormalities, especially when implantation is not deep enough.

Recently, with improvement in more nutrient-permeable synthetic materials, nutrient flow through the implant should not be an manageable problem any more. We propose an intrastromal inlay to regularize corneal shape in keratoconus. Annular intracorneal inlays (AICI) are corneal inserts made of hexafocon A designed to regularize the corneal surface by flattening the central corneal curvature. Hexafocon A has very high oxygen permeability (Dk 100) and seems to be superior compared with currently available materials used as corneal inlays (polymethyl methacrylate). To the best of our knowledge, this is the first time that hexafocon A has been used as corneal inlay. The purpose of this animal study was to investigate the biocompatibility of the proposed AICI after surgery in the rabbit model. Cellular changes were analyzed at different stromal depths using confocal microscopy. In addition, pathological changes of the rabbit cornea after implantation of this corneal inlay were studied.

MATERIALS AND METHODS

Eighteen eyes of nine 12- to 15-week-old female New Zealand white rabbits weighing 2.3 to 3.2 kg were included in this prospective study. Each rabbit had intrastromal pockets created in both eyes, and the intrastromal inlay was randomly implanted in one of the eyes.
All animals were cared for in accordance with the Association for Research in Vision and Ophthalmology resolutions regarding the use and ethical treatment of laboratory animals. The protocol was reviewed and approved by the animal care committee of Farabi Eye Hospital.

The AICl made of hexaficon A polymer with a refractive index of 1.415, mimicking normal corneal stroma, was used in this study. This inlay was proposed to regularize corneal shape in patients with keratoconus. By redistributing the stresses on the cornea, this inlay created a hammock effect that reduced the biomechanical force exerted by the intraocular pressure and aqueous, preventing further corneal ectasia. The inlay used in this study had a thickness of 160 μm, an outer diameter of 5 mm, and an inner diameter of 4 mm. This polymer was previously tested and was proved to have good nutrient and oxygen permeability for contact lens application.12

Rabbits were anesthetized by intramuscular injection of ketamine hydrochloride and xylazine hydrochloride. In addition, topical tetracaine was applied to each eye before operation. A 4.5-mm long clear corneal curved wound, approximately 1 to 2 mm anterior to the temporal corneal limbus, was created. A curved Melles stromal dissector was used to create a corneal lamellar pocket to approximately 60% to 70% of corneal depth, which was extended to 1 mm from the limbus for 360° with a diameter of 9 mm. The inlay was then inserted into the pocket centering roughly on the geometric center of the pupil. The contralateral control eye had a pocket dissected, but no inlay was placed in it. The wound was closed with 2 radial 10-0 nylon (Ethicon, Somerville, NJ) sutures in each quadrant.

Postoperatively, topical chloramphenicol 0.5% and topical prednisolone acetate 1% were administered 4 times daily for 1 week to both eyes. Postoperative evaluation was performed at the first and seventh day, and every 4 weeks thereafter. The examination included integrity of the corneal stroma and epithelium above the inlay, assessment of conjunctival redness, position of inlay, and optical clarity and integrity of the inlay.

Postoperative confocal imaging was performed 1 and 3 months after surgery using the HRT3 Rostock Corneal Module (Heidelberg Engineering, Heidelberg, Germany). Confocal microscopy, using the technique described by Mastropasqua et al,13 was performed by the same operator during all visits. Keratocyte density was calculated as the mean of the numbers of cells of 5 images in each stromal depth, counted manually within a 250- × 250-μm square. Results were given as cells per square millimeter. Refractive outcome was not measured in this animal study.

All animals were killed after 6 months, and the corneoscleral rims were removed using 0.12-mm forceps and Westcott scissors. The animals were killed using intravenous injection of pentobarbital while they were under general anesthesia with ketamine and xylazine before collection of corneoscleral rims. Corneoscleral rims were fixed with glutaraldehyde for light microscopic studies. Epithelial thickness was determined by averaging 4 measurements on 4 different tissue sections above the inlay in both study groups. We evaluated stromal keratocytes and collagen lamellar pattern around the pocket and at the edges of the implant. Descemet membrane and endothelium were also evaluated in both groups.

Normal distribution of data was analyzed by the Kolmogorov–Smirnov test. Student t test was used to compare the 2 study groups. P < 0.05 was considered significant.

RESULTS

Clinical Examination

Inlays were successfully implanted in each animal at a depth between 60% and 70% of stromal thickness. Although the exact stromal depth was difficult to assess using slit-lamp biomicroscopy, measurement of pocket depth with confocal microscopy revealed a mean pocket depth of 67% and 65% implantation in the inlay eye and fellow eye, respectively.

Mild corneal edema was present during the first few days and disappeared afterward with slight haze around the tunnel site in all cases. This mild haze seemed to be associated with the wound-healing response in the tunnel site through the wound-healing process. Mild corneal edema resolved between 5 and 10 days postoperatively in all cases. After the first month of operation, no eye had corneal edema or conjunctival injection.

Deposits around the lamellar channel developed in 3 eyes with AICl implanted between 1 and 3 months postoperatively. There were small, speck-like particles extending along or anterior to the inlay. Underlying structures were clearly visible in all 3 cases. This was not observed in any of the pocket-only eyes. Although edema was more prominent around the tunnel site during the first few days, deposits were mostly present around the implant.

No neovascularization or epithelial downgrowth was present at the incision site in any case. All inlays remained centered and optically clear. An even tear film over the cornea was present in both implanted and control eyes at all visits.

When examined under slit-lamp biomicroscopy, all corneas in implanted and control groups remained clear during consecutive follow-ups. Mild conjunctival injection was observed in the first postoperative days, and it resolved after 1 month. Anterior chambers were clear in all eyes during the follow-up period.

Imaging

Confocal imaging showed no significant difference in keratocyte cell density at 3 stromal depths, and endothelial cell density between the control pocket-only and the inlay groups (Fig. 1; Table 1). There were no differences between both groups in corneal pachymetry and pocket depth (P = 0.1 and 0.5, respectively).

Pathology

Hematoxylin–eosin staining was performed for all corneas (Fig. 2). There was no difference in average epithelial thickness between both groups (43.6 ± 6.2 and 47.8 ± 5.9 for implanted and pocket-only groups, respectively; P = 0.07). Intrastromal deposits around the implant corresponded to nonhomogeneous
cellular formations in pathology sections. Compression of collagen lamellae was evident around the edges of the implant (Fig. 2). Descemet membrane and endothelium appeared to be normal in both groups. The incision site across the cornea was determined by fibrosis. New irregular lamellar collagen formation and hypocellular primitive scar tissue were present around the implant. Keratocyte density was normal around the implant.

**DISCUSSION**

Barraquer\(^1\) pioneered implanting flint glass and plexiglass into the corneal stroma to reshape the cornea and correct refractive errors. Unfortunately, because of lack of biocompatible materials, most cases had unfavorable outcomes. Sweeney et al\(^6\) summarized studies about implantation of synthetic materials as corneal inlays and provided essential properties for these inlays.

Hexafocon A is a rigid high-Dk material that has been used as a base material for contact lens production worldwide. Hexafocon A has an ISO/Fatt Dk of 100 with proven records of good oxygen permeability.\(^{12}\) There are no previous studies on nutrient permeability of hexafocon A, but lack of tissue melting and pathological results of this study suggest good biocompatibility and nutrient permeability of the material, which makes it acceptable for intrastromal corneal inlays.

We observed deposits around the lamellar channel in 3 eyes with AICI implanted. Other animal studies on intrastromal inlays\(^{14 - 16}\) revealed keratocyte activation, new collagen formation, and lipid deposit around the implants. Similarly, human histopathological findings of electron-dense deposits containing interspersed collagen fibrils, extracellular empty spaces (likely clefts formed from lipid removal during processing), and persistently activated keratocytes have been reported.\(^{17}\) Extracellular lipid deposits, corresponding to clinically observed crystalline deposits, probably arise from chronic mechanical irritation to keratocytes by the inlay.\(^{17}\) Roth et al\(^18\) described pathogenesis of experimentally induced lipid keratopathy in rabbits that had similarities to the lamellar channel deposits reported after INTACS implantation. Other investigators described similar findings with both PMMA and hydrogel corneal implants in primates.\(^{16,19}\)

Several human and animal studies have reported the safety and efficacy of inlay procedures in reshaping the cornea. McCarey et al\(^4\) reported favorable results in implanting hydrogel intracorneal lenses (lidofilcon A and lidofilcon B; Allergan Medical Optics, Irvine, CA) in rhesus monkeys during a 2-year follow-up.

Ismail,\(^20\) Sweeney et al,\(^6\) and Xie et al\(^7\) reported excellent biocompatibility of intracorneal lenses in rabbit eyes. Sweeney et al\(^6\) reported similar favorable results in human eyes. Other human studies reported similar safety and efficacy profiles for hyperopia-correcting corneal inlays.\(^{8,9}\) Recently, we reported our results of a complete intracorneal ring (MyoRing) to correct keratoconus.\(^{10,11,21}\) However, some human studies reported complications of intrastromal inlays, including significant visual loss and scarring, intrastromal epithelial opacification, and unacceptable visual outcomes.\(^{8,20,22}\)

In this animal study, we implanted intracorneal inlays made of hexafocon A in New Zealand white rabbit eyes. No serious epithelial, stromal, and endothelial complications were observed during the 6-month follow-up period.

<table>
<thead>
<tr>
<th>TABLE 1. Comparison Between the Control Pocket-Only Group and Inlay Group in Confocal Imaging 3 Months After Surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Inlay Eye</strong></td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Anterior keratocyte density</td>
</tr>
<tr>
<td>Midstromal keratocyte density</td>
</tr>
<tr>
<td>Posterior stromal keratocyte density, cells/mm(^2)</td>
</tr>
<tr>
<td>Endothelial density, cells/mm(^2)</td>
</tr>
<tr>
<td>Pachymetry, μm</td>
</tr>
<tr>
<td>Pocket depth, μm</td>
</tr>
</tbody>
</table>

**FIGURE 1.** Confocal microscopy images of rabbit midstromal cornea. A, Inlay implanted. B, Control. The figures demonstrate no significant difference in keratocyte density and stromal clarity.
This study revealed safety and biocompatibility of hexafocon A as an intracorneal inlay in rabbits. The next step is including human corneas of blind eyes in the study to ensure safety and biocompatibility of hexafocon A in human tissue.

REFERENCES